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Abstract

This article builds on some of the research ideas discussed in the commonsense
reasoning and knowledge track as part of the Ontology Summit 2019 on
explanations. As discussed there, research on intelligent systems has long
emphasized the benefits of providing explanations for system reasoning, although
approaches to an explanation function have evolved over time. While system-
provided explanations like common-sense knowledge (CSK) and associated
reasoning (CSKR) each go back to the early days of artificial intelligence (AI)
systems, they became somewhat independent research areas for much of their later
history. This was in part because explanations in early AI efforts were technical in
nature centering on how faithfully a system describes the reasoning and heuristic
steps employed. Another factor was the difficulty of building adequate bases of
CSK for reasoning. Although early AI notionally recognized that as part of
intelligent systems explanations should make commonly understood sense, this
was not a sustained priority in later work. Instead CSK research engaged more on
issues of adequate knowledge representation, how to acquire a base of CSK and
the diversity of ontologies needed to support CSK. While these are not finished
research areas, they now provide useful guidance to support a current interest in
the role of CSK explanations motivated by new challenges and opportunities.
These include the rapidly expanding space of heterogeneous and richly
interconnected data along with diverse sub-symbolic (deep learning) intelligent
system applications. New AI approaches include useful, but only partially
understood results, from machine learning (ML) and deep neural net (DNN)
approaches. The complexity of these approaches, which includes use of patchy and
inconsistent information available online, prompts a renewed desire to have
systems explain their decisions and processing in deep, flexible, defendable and
understandable ways. Recent work has promoted the development of AI systems
using ML-based models with a range of explanatory capabilities for generated
decisions. Common sense concepts now play a role in providing better
performance and a range of more easily understood explanations for end users.

Taken as a whole, the cumulative lesson of decades of research is that fluid
explanations, responsive to changing circumstances require knowledge about the
world and that explanations are intimately connected to both common-sense
reasoning and background knowledge such as captured in formal ontologies, but
also informally understood in text (Davis and Marcus, 2015). The combination of
information and its context extracted from a range of sources and organized and
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represented formally provides a base, not only for intelligent system performance,
but also for background knowledge needed for flexible and deep explanations. In
practice there seem to be many views of satisfactory explanations but that CSK and
reasoning plays varying, but useful roles in each of these.

Among the remaining challenges are those of developing an adequate base of CSK,
an adequate approach to situational and contextual understanding, how to use deep
learning in dynamic situations, the need to keep humans in the loop and the need
for a common enhanced ontology engineering practice addressing both explanation
and CSK.

Introduction

THE 2019 ONTOLOGY SUMMIT on Explanation (Ontology Summit, 2019)
provided an opportunity to look at various approaches of intelligent/smart
systems ifrom a number of perspectives including that of commonsense
knowledge (CSK) and associated reasoning (CSKR). Commonsense
reasoning and knowledge was prominently featured as an early part of
Artificial Intelligence (AI) conceptualization, and it was assumed to be
important in the development and enhancement of human-like, intelligent
systems explanations, which also had a defined role in early AI. Both
continue to be considered important parts of intelligent systems and this is
not surprising when we consider the centrality of an ability to explain
reasoning and what they know by a system whose claim to fame is
intelligence itself. Over the past half century of work on intelligent systems,
a variety of approaches to explanation have been engineered and deployed
and when carefully designed proven useful. On the whole CSKR’s role in
explanations has been more indirect than direct. It has often been used to
provide a perspective on explanatory short comings. However, new ML
techniques that construct and represent knowledge using non/sub-symbolic
models layer additional requirements for understandable explanation. This
in turn provides and opportunities for CSKR to aid in such explanations
(Chakraborty, et al. 2017).

In the sections that follow I discuss some of the historical relations
of explanation and CSKR followed by some of the experience over time of
crafting both CSKR and good explanations. A useful way to illustrate the
current status of this work is to overview how some explanation applications
are built and employed in representative areas. Following this I overview
some of the issues and some of the challenges introduced by a consideration
of applying CSKR to contemporary AI and ML systems and the recent
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efforts in the new field of eXplanatory AI (XAI). We conclude with a
summary of some preliminary findings, identification of remaining issues
and opportunities that might promote and guide future work.

Some Background on the AI Connections of Commonsense and
Explanation

In this section I review some of the major developments along the
AI path to intelligent systems and why CSKR seems like an important
ingredient in the development of intelligent explanation. Note, that this
review is not comprehensive, but represents a survey giving the flavor of
methods and results that are pertinent to the evolution of explanations and
CSKR.

Simply put, fifty years of experience teaches us that only an
intelligent system that justifies its actions in terms which make sense so they
are readily understandable to the user will be trusted (Cohen et al, 2017) .
Early AI work showed that rudimentary attempts at explanation provided
useful to system engineers and a modicum of user satisfaction if not trusted
(Langlotz and Shortliffe, 1984). As a result improvements in explanation
have remained a necessary next step in intelligent system evolution for a
long time. Interestingly, one sees in the original Turing Test the need for
CSKR and explanations each as part of communication to pass the test.
These are, of course, common human abilities to live in an ordinary world
(Ortiz, 2016). Some examples of CSKR needed for passing a Turing Test or
just living in society are illustrative of the range involved and might include
the following type of reasoning:

 Taxonomic: Cats are mammals.
 Causality: Eating a peach makes you less hungry.
 Goals: I don’t want to get hot so let’s find shade.
 Spatial: You often find a microwave in the kitchen.
 Functional: You can sit on a chair if tired.
 Planning: To check today’s weather look on a weather application.

 Linguistic: The word “won’t” is the same as “would not”.
 Semantic: Cat and feline have a similar meaning.

Many cognitive abilities that are developed it seems simply in the
first years of life provide the commonsense knowledge and reasoning to
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handle the above list and problems like conservation of objects - if I put my
toys in the drawer, they will still be there tomorrow. It has proven much
harder to get such an adequate base of knowledge and associated reasoning
into computational systems. Early on in this process two ways seem possible
to populate such knowledge for an intelligent system. One is by handcrafting
in a mass of commonsense knowledge, while another is by letting a system
learn from training experience with things like object conservation over time
or place. One may also consider some combination of the two, say building
in some knowledge and using that to learn more, or letting it learn and
correcting errors by adding hard to learn knowledge or by dialog with a user.

Indeed an early AI goal was to endow systems with natural language
(NL) understanding and text production, which it worth noting could be used
for explanations. It is easy to see that a system with both CSKR and NL
facilities would be able to provide smart advice as well as explanations of
this advice. We see both in the early conceptualization of a smart advice
taker system fromMcCarthy’s workmaking causal knowledge available for:
“a fairly wide class of immediate logical consequences of anything it is told
and its previous knowledge.” McCarthy (1960) further noted that this useful
property, if designed well, would be expected to have much in common with
what makes us describe certain humans as “having commonsense.” John
McCarthy believed so and argued that a major long-term goal of AI should
include endowing computers with standard commonsense reasoning
capabilities.ii

While there is a long history showing the relevance of commonsense
knowledge and reasoning to explanation in actual practice, going back to the
70s and 80s, AI systems, aka “expert systems”, were not as the founders
envisioned. They were less knowledgeable and brittle, based on explicit
models of domains implemented using handcrafted production rules
encoding useful information about special topics such as diseases. In part
because of handcrafting of knowledge rather than the engineering of
knowledge systems rule, knowledge was fragmented and opaque and would
break down revealing obvious errors. Part of this was due in part to a lack of
the robustness available from human-like commonsense which was hard to
handcraft or engineer into applications’ supporting knowledge bases.
Following an easier development path 1970s era expert systems came, as
shown in Figure 1, with a very simple, technical, but not commonsense rich
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idea, of what was called an “explanation facility.” The early
implementations used a proof trace of rule firings which provided a purely
technical explanation. It did not include what we call justifications for its
explanations. Such proofs founded on “Automated Theorem Provers”
(Melis, 1998) could provide a map from inputs to outputs and served the
needs of system engineers to understand system performance more than
providing an explanation to a useriii.

Figure 1. Simple View of an Early Expert System

But case specific and mathematical based proof planning are not as
robust or as reliable as they first seemed to AI developers. This was due to
the commonly understood fact that situations being reasoned over were often
not adequately represented. Thus, situations and the explanations about them
lose some intuitive meanings expected by users (Bundy, 2002). Another
problem is that rules in a knowledge base (KB) can change over time and
early efforts did not include meta-knowledge to explain why they change.
To make sense changes often need explanations.

Along with brittleness and limited utility of traces, part of the
weaknesses of rule-based explanatory reasoning, was exposed by Clancey
(Clancey, 1983). He found that the AI system called Mycin’s had individual
rules that play vastly different roles, have different kinds of justifications,
and are constructed using different rationales for the ordering and choice of
premise clauses in the rules. Since in this rule knowledge isn’t made explicit,
it can’t be used as part of explanations. And there are structural and strategic
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concepts which lie outside of early AI system rule representations. It was
soon realized that these can only be supported by appealing to some deeper
and contextual level of (background) knowledge. But commonsense context
was seldom “explicitly stated” and thus difficult to engineer.

In searching for solutions the next generation of AI developers used
more structured and formal KBs such as frames or semantic net-like
ontologies to capture and formalize a fuller range of necessary knowledge.
At this time the role of causal-based explanations also helped design more
knowledgeable and integrated rather than ad hoc expert systems, based on
the idea that a system’s knowledge should be integrated with performance
and adequate to explain its reasoning (Swartout and Smoliam, 1989). Taken
together this made the argument that something like ontologies are needed
to make explicit structural, strategic, and support-type knowledge. One
result was development of large KBs such as in the Cyc project (Lenat and
Guha, 1989), a 35-year effort to codify common sense into an integrated,
logic‐based system. Efforts like Cyc which started up in the 80s represented
an effort to avoid problems like system brittleness by providing a degree of
common-sense and modular knowledge (Lenat, et al 1985). Cyc can provide
a response to queries such as: “Can the Earth run a marathon?” In terms of
a commonsense explanation we have a “no” because of the knowledge that
the Earth is not animate and the role capability needed to run a marathon is
detailed by the knowledge in a sports module. Indeed the need for a formal
mechanism for specifying a commonsense context had become recognized,
and some approach to it, such as Cyc’s microtheories aroseiv. In the 80s Cyc-
type knowledge was also seen as important to what was called associate
systems. This advance argued that “systems should not only handle tasks
automatically, but also actively anticipate the need to perform them....agents
are actively trying to classify the user’s activities, predict useful sub-tasks
and expected future tasks, and, proactively, perform those tasks or at least
the sub-tasks that can be performed automatically” (Panton, 2006). All of
these abilities were, of course, conceptually useful for explanation, so
advances in CSKR, like a Cyc micro-theory could serve a dual role. Much
ontological work has followed the spirit of this idea if not the exact program
outlined to build large KB such as the Cyc project.

But subsequently, except for a few systems they were rarely applied
as part of mainstream systems although the need was often noted (Minsky,
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2000). Although some efforts, such as Crowdsourcing common sense
training data in Open Mind (Singh, 2002a) are notable, the effort to engineer
sufficient CSK for reasoning as well as reasonable explanations has proven
difficult. While there are some success as an aid to NLP, where hybrid
approaches out perform an NLP tool like BERT (Havasi, 2019), the scale
of the problem has been discouraging; for people seem to need a tremendous
amount of knowledge of a very diverse variety to understand even the
simplest children's story (Singh, 2002b). Research retreated from an
ambitious broad CSKR aim and instead pursued special domain knowledge
and reasoning that could deal with a more focused class of problem. But
these lacked generalization and thus did poorly at almost everything else
(Minsky, Marvin L., Push Singh, and Aaron Sloman, 2004).

Despite direct approaches to explanation and problems of
formalizing background knowledge, work since the 1990s has included
other forms, styles, or meanings of explanation that seemed easier. Because
proof isn’t always useful and deep background knowledge is hard to
formalize another form of documentation, and thus a style of explanation
has often been used that involves the provenance or source of some fact or
statement (McGuinness, 2003, Moreau, 2010, Darlington, 2013). This arises
often when we want an explanation to make clear what the documented
source of data isv.

In contrast AI explanation work in the 90s and early 2000s focused
on simpler techniques to make explanations acceptable to novice users rather
than using large KBs of CSK which were expensive, time consuming, and
hard to build with the tools and limited expertise available. Modest use was
made of cognitive learning theory and associated technology vi which
suggested the need for explanation justification using explicit knowledge of
things like conceptual terminology, domain facts, and causal relations to
enhance the ability of novice user’s understanding (Darlington, 2013). What
was more desired was explanations that also aided engineers in modifying
systems (e.g. knowledge debugging as part of KB development).

CSKR and Explanation in the new era of ML

As noted earlier, it can be costly to acquire an adequate base of
CSKR for its own sake as well as leverage it for explanations. And, when
acquired, since there are a variety of ways to represent CSKR, from symbolic
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forms of rules to semantic nets, and logic, the knowledge content becomes
heterogeneous and siloed making them difficult to integrate and structure for
explanations.

This makes it attractive to consider lighter methods for acquiring
knowledge like opportunistic extraction processes from text, including
online text and linked data, using AI, ML, or NLP tools. Rapidly advancing
ML capabilities have raised the hope of capturing knowledge including
masses of CSK in more automated ways that are less resource intensive.
There has now been a decade of work to acquire and represent domain
knowledge, even some commonsense-like knowledge, using automated
extraction and ML processes that acquire models learned from training data.
A remaining problem with early work that is still somewhat with us is that a
large store of training data is needed because the model must learn anew
from scratch each time it learns anything. And this isn’t how people work.vii

One prominent, illustrative attempt to tackle this problem is the
Never-Ending Language Learner (NELL) system which uses a coupled
semi-supervised training approach (Mitchell et al, 2018). Central to the
NELL effort is the idea that we will never truly understand machine or
human learning until we can build computer programs that share some
similarity with the way humans learn. This does promise the possibility of
acquiring a useful set of CSKR along the way. In particular such systems, as
discussed by (Mitchell et al, 2018), are like people in that with years of
diverse, mostly self-supervised experience, they can learn many different
types of everyday knowledge or functions and thus information from many
contexts. This happens in a staged bootstrapping fashion, where previously
learned knowledge in one context enables learning further types of
knowledge. It is easy to elaborate on cognitive processes for informed ML
(Von Rueden et al, 2019) using ideas such as self-reflection on existing
knowledge and the ability to formulate new representations and new
learning tasks that enable the learner to avoid stagnation and performance
plateaus.

As reported in Michell et al (2018) NELL has been learning to read
the web 24 hours/day since 2010, and at that time had acquired a knowledge
base with over 80 million confidence weighted beliefs (e.g., servedWith(tea,
biscuits).90 confidence). NELL has also learned millions of features and
parameters that enable it to read these beliefs from the web. Additionally, it
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has learned to reason over these beliefs to infer (we might say using CSKR)
new beliefs, and is able to extend its ontology by synthesizing new relational
predicates. NELL learns to acquire knowledge in a variety of ways. It learns
free-form text patterns for extracting this knowledge from sentences on a
large scale corpus of web sites and it learns probabilistic rules that enable it
to infer new instances of relations from other relation instances that it has
already learnedviii. As an example, NELL might learn a number of facts from
a sentence defining “icefield”, such as:

“a mass of glacier ice; similar to an ice cap, and usually smaller and
lacking a dome-like shape; somewhat controlled by terrain.”

In the context of this sentence and this new “background knowledge”
extracted it might then extract supporting facts/particulars from following
sentences:

“Kalstenius Icefield, located on Ellesmere Island, Canada, shows
vast stretches of ice. The icefield produces multiple outlet glaciers that flow
into a larger valley glacier.”

Also of importance is that not only the textual situation is used to
inter-relate extracted facts, but the physical location (e.g., Ellesmere Island)
and any temporal situations expressed in these statements is used as
context.ix NELL remains an example of how NLP and ML approaches can
be used to build CSK and domain knowledge, but source context as well as
ontology context needs to be taken into account to move forward. But NELL
while it has extensive knowledge, it has relatively shallow semantic
representations and thus suffers from ambiguities and inconsistencies
(Gunning, 2018). And compared to handcrafted information such parts of
extracted information are inconsistent with other parts and much noisier.
Further, it is challenging to capture relevant situational context which
include potentially important relations to other concepts - much of what is
needed may be implicit and inferred and is currently only available in
unstructured and un-annotated forms such as free text. And often training
inputs to the model are highly engineered features that are complex or
difficult to understand, meaning the resulting model learned will be hard to
decompose for understanding use as input to explanation.

But progress on this problem comes from advanced ML applications
where prior knowledge (background knowledge) may be used to judge the
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relevant facts of an extract, which makes this a bit of a bootstrapping
situation.

Despite the remaining problems it seems reasonable that the role of
existing and emerging Semantic Web technologies and associated
ontologies is central to making CSKR population viable and that some
extraction processes using a core of CSKR may be a useful way of
proceeding.

CSKR helps Understanding and Thus Performance as well as
Explanation in Contemporary ML Applications

As we have seen, the context that is important for discussing
contemporary approaches to CSKR and explanations is that AI systems
increasingly use advanced techniques such as deep learning (DL). These
may in turn require additional techniques to make themmore understandable
to humans and system designers as well as trusted. For a different reason the
current excited emphasis on explanation grows in part out of a feature failure
of Deep Learning (DL) solutions - without additional effort they are opaque,
at least in the sense that the models learned are not transparent to users or
engineers. Despite this, contemporary deep neural networks (DNNs) have
seemingly achieved near-human accuracy levels in various types of
classification and prediction tasks including image and object recognition,
text, speech, video data and behavior monitoring. These are all considered
“low-level” tasks and advanced operations like planning or focused attention
are not involved. Like simple rule-based explanations before them, raw DL
systems do not natively handle desired aspects of explanations. Post-hoc
explainability may be added to make them seem responsive. More recently,
researchers, such as part of DARPA’s XAI program, as described by (Srihari,
2020) in this Issue, aim to create a suite of rich ML techniques that:
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 produce more explainable models while maintaining a high level of
learning performance and,

 enable humans to understand, appropriately trust, and effectively
manage the emerging generation of AI “associates” that can be used in
“high-level” domains such as healthcare, criminal justice system, and
finance (Goodfellow 2016).

A notional architecture of a modern, hybrid intelligent system is
shown in Figure 2. Here knowledge and reasoning are divided into several
types which produce not only better problem solving abilities but
explanations interpretable to a range of audience types. In order to achieve
this a range of knowledge sources is involved as well as ML applications to
further enrich the acquisition process.

Figure 2: Architecture of a Hybrid Intelligent System

As an example, until recently the networks developed by ML for
even simple vision detection approaches were treated mostly as black-box
function approximators, in which a given input is mapped to some
classification output such as the task of labeling images or translating text,
as discussed in tracks of the 2019 Ontology Summit (Baclawski, 2018). So
while ML and DL applications are now in wide use for common tasks such
as advanced navigation with some sort of explanations to users, they are not
naturally conducive to the generation of explanation structures. Because of
complexity model simplification, say creating a decision tree, and/or feature
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relevance techniques which gauges the influence, relevance, or sensitivity
each feature has in the prediction output by the model to be explained.

Supplications are often needed as a basis for explanations (Arrieta et
al, 2020). Thus while non-technical, but valid and commonsense fashion are
increasingly desired, they do not come without additional effort. Yet as
Gunning summarizes:

Machine reasoning is narrow and highly specialized. Developers
must carefully train or program systems for every situation. General
commonsense reasoning remains elusive. The absence of common sense
prevents intelligent systems from understanding their world, behaving
reasonably in unforeseen situations, communicating naturally with people,
and learning from new experiences. Its absence is perhaps the most
significant barrier between the narrowly focused AI applications we have
today and the more general, human-like AI systems we would like to build
in the future. (Gunning, 2018)

In a sense this is a return to an early desire to have smart applications
knowledgeable about common phenomena and coincidentally ones capable
of providing satisfying, interpretable explanations, but now positioned to
take advantage of AI advances using DL. The path is necessary even though
we still have not solved all the challenges of CSKR. Considering the range
of application anticipated the goal of a reasonably competent CSKR system
should include the ability to reason about explanations (“that makes sense”)
taking into account things like predictions, generalization, metaphors and
abstractions, examples, as well as the goodness of plans, and diagnosis.

There is an obvious trust benefit if semi- or fully-automatic
explanations can be provided as part of decision support systems. This seems
like a natural extension of some long used and understood techniques such
as logical proofs. Benefits can easily be seen if rich and deep deductions
could be supported in areas regarding policies and legal issues, but also as
part of automated education and training, such as e-learning. But there
remains an inherent tension between ML performance (for example,
predictive accuracy) as well as ideas of fairness and explainability. Often the
highest-performing methods (for example, DL) are the least explainable, and
the most explainable (for example, decision trees) are the least accurate and
do not take into account the needs of the user.
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Respective of formalisms and computational methods, an important
criteria driving development is to ask “do these explanations make
something clear?” DL systems are opaque and do not fully handle desired
aspects of explanation to make them humanly comprehensible, which is the
ability, in this case of ML algorithm to represent what is learned in a human
understandable fashion. As noted, technical views may provide an answer to
“how” the explanation was arrived at in steps and which rules or features
were involved, but not the justifying and clarifying “why” of a satisfactory
explanation. If, for example, a tree or hierarchical structure is involved in an
explanation process we might get more of a “why” understanding with the
possibility of drilling down and browsing a decision tree, having a focal
point of attention on critical information or having the option of displaying
a graphic representation that is human understandable. An example would
be if a vehicle controller AI system for driving, based on visual sensing of
objects could provide commonsense explanations (Persaud et al, 2017).
Using internal commands a system may describe itself spatially as “moving
forward”, while a human description is the more functional and just one of
“driving down the street.” For explaining a lane change the system says,
“because there are no other cars in my lane” while the human explanation is
informative in another way “because the lane is clear.” These are similar but
“clear” is a more comprehensive idea of a situation which might include
construction, tree litter etc. (Tandon et al. 2018). A comprehendible
explanation includes coherent pieces of information, more or less directly
interpretable in natural language, and might relate quantitative (“no cars”
and qualitative concepts (“near my lane”) in an integrated fashion.

It is important to note that under the influence of modern ML and
Deep Learning (DL) models both CSKR and smart system explanations
have recently been developing alongside these efforts and provide mutual
support by co-developing deep explanations. These amount to modified or
hybrid DL techniques that learn more explainable and CSKR features or
representations or that feed into explanation generation facilities.

An area where we might see this developed is in the ability of DL-
based applications to describe images (Geman, et al. 2015). This might be
considered as one element of a visual Turing Test-like application and
involve question- answering based on real-world images, such as detecting
and localizing instances of objects and relationships among the objects in a
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scene. Some commonsense-making involved localizing questionsx posed
might include the following:

 What is Person1 carrying?
 What is Person2 placing on the table?
 Is Person3 standing behind a desk?
 Is Vehicle 1 moving?

This spate of recent work, reflecting the ability of ML systems to
learn and answer questions about visual information and even text, has led
to more distinctions being made about CSKR in support of robustness of the
many ML applications which are increasingly thought of as mature enough
to use for some ordinary tasks. Visual recognition is one of these, and
supporting research approaches generate image captions to train a second
deep network that can in turn generate explanations without explicitly
identifying the original network’s semantic features. This work continues
but Shah et al (2019) suggests that some current ML applications are not
robust as simple alternative NL syntactic formulations that lead to different
answers. For example, if a system is asked “What is in the basket” and “What
is contained in the basket” (or “what can be seen inside the basket”) we get
very different answers. Humans understand these as having similar
commonsense meanings, but ML systems may have learned something
different. And we may not know what they have learned and thus any direct
explanation may be unsatisfactory for a user.

An obvious problem is that DL using a combination of efficient
learning algorithms working over huge parametric space by themselves, are
complex black-boxes in nature (Castelvecchi, 2016). For example, in a large
knowledge graph measurements like nearest neighbors cannot be
decomposed and/or the number of variables is so high that the user has to
rely on mathematical and statistical tools to analyze the model. So while
these approaches allow powerful predictions, their raw outputs cannot easily
be directly explained and post hoc efforts are sometimes used. Consider the
capability people have to distinguish the visual modality expressing a simply
observed property like color or what seems like some simple relation like
part. These afford common-sense and practical implications like “shiny
things imply smoothness and so less friction”. Distinctions like “smoothness”
can play a role in transfer of training to new areas. Research now reliably
shows the value of transfer training/learning such as with NELL. Transfer is
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enabled by pre-training a neural network model working on a known task,
say image recognition using stored images from a general source like
ImageNet. The resulting trained neural network (with an implied “model”)
is aimed for use with new, but related and purpose-specific models. What
makes transfer difficult is finding training data that can provide a base to
transfer for multiple types of scenarios and new situations of interest. There
remain problems of representativeness and the selection of the typical to
some generalizations such “shiny surfaces are typically hard, but some are
not”. There is also the problem of perspective. Imagine that we have in an
image, the moon in the sky and a squirrel under a tree. They may seem the
same size, but we know from common experience that they are at different
distances and thus only appear to have a similar size. This is not something
learned by a regular NN application, but it would be good to acquire this
type of CSKR to allow this understanding.

Summing up Findings, Directions and Future Work

It seems clear that both CSKR and explanation remain important
topics as part of AI research and its surging branch of ML. Further they can
be mutually supportive, although explanation may be the more active area
of diverse work just now. A guiding idea is that a truly explainable model
should not have such knowledge gaps that users are left to generate different
interpretations depending on their background knowledge. Having a suitable
store of CSK can help an intelligent system produce explanations including
natural language forms combining CSKR and human-understandable
features (Bennetot, 2019).

For future direction five areas are noted:

1. Challenges in developing an adequate base of CSK
2. Situational and contextual understanding
3. Deep learning and dynamic situations
4. Interactions with humans
5. The need for a common, enhanced ontology engineering practice.

Adequate Knowledge: Providing a suitable base of CSK remains a
broad, deep, and some say a largely unbounded problem. It seems generally
true that one master ontology will not suffice for either specific domains or
CSK and that a range of ontologies will be needed for an adequate CSK.
Single ontologies are not likely to be suitable as work expands and more
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contexts are encountered. This will require multiple ontologies and/or a
range of MTs as in Cyc. Big Knowledge, with its heterogeneity and depth
complexity, may be as much of a problem as Big Data especially if we are
leveraging heterogeneous, noisy, and conflicting data to create CSKR and
explanations (Pauleen and Wang 2017). Various approaches do exist for
different forms of CSKR, but the integration of these as well as ontologies
with different content is still challenging. Linked data have a simplified view
of KBs as a set of linked sentence-like assertions. However, integration of
these requires some degree of background knowledge to understand the
underlying assertions expressed in natural language labels. It is hard to
imagine that major integration challenges from various forms with varying
degrees of formality can be avoided. The ontology experience is that as a
model of the real world we need to select some part of reality based on
interest and conceptualization of that interest. Differences of selection and
interpretation are impossible to avoid and it can be expected that different
external factors will generate different contexts for any intelligent agent
doing the selections and interpretation needed as part of a domain
explanation.

The work such as Yi andMichael Gunginer, 2018 (Gunninger, 2018)
suggests some coordinated set of ontologies that might be needed to support
something as reasonable and focused as a Physical Embodied Turing Test.
These include several aspects of intelligence, such as perception, reasoning,
and action. Grunninger’s suite (Gruninger, 2019), called PRAxIS
(Perception, Reasoning, and Action across Intelligent Systems) with the
following components:

 Solid Physical Objects (SoPhOs)
 Occupy (Location - Occupation is a relation between a physical

body and a spatial region)
 Process Specification Language (PSL)
 Processes for Solid Physical Objects (ProSPerO)
 Ontologies for Video (OVid)
 Foundational Ontologies for Units of measure (FOUnt)

It is worth mentioning that ontologies like SoPhOs might emulate
the intuitive physics of child cognition for objects while an “Occupy”
concept provides notions of location and place used for spatial navigation.
While this remains an early effort it does illustrate some of the diverse types
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of CSKR that need to be formalized. Yet there exists a range of strategies
that could be employed to make progress on both the CSKR challenge and
in its use to enhance explanations. In the sub-sections below, some of the
remaining explanation and CSKR issues are further illustrated arising from
some old problems that may affect more on the relatively newer challenges
raised by ML and DL approaches.

Situational and contextual understanding: More complex tasks will
involve greater situational understandingxi. These include situations where
important things are unseen, but implied in a picture as part of the larger or
assumed context such as exist in environmental or ecological settings with
many dependencies. An example offered by Niket Tandon (Tandon et al.,
2018) involves the implication of a directional arrow in a diagram of food
web which intentionally communicates “consumes” to a human (a frog
consumes bugs). The problem for modern learning oriented systems is that
they are unlikely to have arrows used visually this way enough to generalize
to a “consumes” meaning. To a human this is background knowledge.

Alas, it remains a hard problem to engineer all such knowledge or
acquire it in an automated fashion. Indeed, since their inception, both
explanatory systems and commonsense R & D have proven to involve
implied, hard problems addressed by natural biological evolutions over a
long period of time: such as the ideas of effective communication, consensus
reality, background knowledge, notions of causality, and rationales. These
allow the handling of things like focus and scale that is a known problem in
visual identification. In a lake scene with a duck a ML vision system may
see water features like dark spots as objects. In this case there seems a need
for a model of the situation and for what is the focus of attention − a duck
object. Some use of commonsense as part of model-based explanations
might help during model debugging and decision making to correct
apparently unreasonable predictions.

Such problems seem simple only because these are ubiquitous in
everyday thinking, speaking, and perceiving as part of ordinary human
interaction with the world. And this knowledge and reasoning seems easily
captured because it is commonly available to the overwhelming majority of
people, and manifest in human children’s behavior by the age of three or
five.
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Deep Learning and Dynamic Situations Generally, the current state
of the art for ML suggests that deep learning can provide some explanations
of what they identify in simple visual datasets such as Visual Query
Answering (VQA) and CLEVR. They can answer questions like “What is
the man riding on?” in response to an image such as the one in Figure 3.

Figure 3: Example of image for ML processing

Whereas, commonsense knowledge is more important when the
visual compositions are more dynamic and involve multiple objects and
agents typical of say a cattle roundup. For dynamic and other situations
further advanced intelligent system evolution needs to consider other
features that may be supportive. This is true even in leaning-oriented
systems like NELL which extract information from sentences. Because of
things like contextual relations there remain many problems with un-
sophisticated textual understanding. Examples are the implications and
scope of negations and what is entailed.xii

Beyond negations there may be many situations one needs to
understand − for example, “what exactly is happening in this ecological
view?” This is challenging because a naive, start from scratch computational
system, has to track everything involved in a situation or event. This may
involve a long series of events with many objects and agents as in an
ecological example or a food chain. Previously discussed situational
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complexity is also evident in visualizing a routine procedural play in
basketball even as simple as a completed or missed dunk (Mishra et al.,
2019). Images of a dunk attempt can be described by three NL sentences:
“He charges forward. And made a great leap. He made a basket.” These
sentences may be understood in terms of some underlying state-action-
changes with a sequence of actions such as running and jumping, but there
are also implied states as follows:

 The ball is in his hands. (not actually said, but seen and important for
the play)

 The player is in the air. (implied by the leap)
 The ball is in the hoop. (technically how a basket is made)

We can represent the location of things in the three sentences above like this:

 Location (ball) = player’s hand
 Location (player) = air
 Location (ball) = hoop (after Tanden, 2019)

These all fit into a coherent action with the context of a basketball
script that we know, and thus humans can focus on the fact that the location
of the ball at the end of the jump is a key result. CSKR about bodily
capabilities apply here (Can I reach that hoop by jumping?) On other hand,
as shown by Tandon et al. (2018), it is expensive to develop a large enough
training set for such CSKR of activities, and the resulting state-action-
change models have so many possible inferred candidate structures (e.g., is
the ball still in his hand? Maybe it was destroyed) so that common events
can evoke an NP-complete problem. Without sufficient data (remember it is
costly to construct), the model can produce what one would consider to be
absurd, unrealistic choices based on commonsense experience such as the
player being in the hoop.

A solution is to have a commonsense aware system that constrains
the search for plausible event sequences. This is possible with the design and
application of a handful of universally applicable rules. And some
constraining ruling can be derived from existing ontologies. For example
these constraints seem reasonable based on commonsense:
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1. An entity must exist before it can be moved or destroyed. (certainly
not likely in basketball)

2. An entity cannot be created if it already exists.
3. A tennis player is located at a tennis court.

In the work discussed by Niket Tanden (2018) these constraints were
directly derivable from the Suggested Upper Merged Ontology (SUMO)
rules such as: MakingFn, DestructionFn, MotionFn. This provides
preliminary evidence that ontologies, even early ones such as SUMO, could
be good guides for producing a handful of generic hard constraints in new
domains.

One might ask, “How much help do these constraints provide?” The
answer is that CSK-based search improves precision by nearly 30% over
State-Of-The-Art DL efforts which include Recurrent Entity Networks
(EntNet) , Query Reduction Networks (QRN) , and ProGlobal (Tanden et al,
2018).

Humans in the Loop While we do seem close to AI systems that will
do common tasks such as driving a car or give advice on common tasks like
eating it remains a challenge that such everyday tasks exhibit robust CSK
and reasonable reasoning in order to be trusted. Monitoring the
reasonableness and safety of automated actions, like driving in dynamic or
even novel situations, illustrate a rapidly approaching but still challenging
commonsense service capability. As intelligent agents become more
autonomous, sophisticated, and prevalent, it becomes increasingly important
that their knowledge become more complete and that humans be able to
interact with them effectively to answer such questions as “why did you (my
self-driving vehicle) take an unfamiliar turn?”

We need humans in the loop and allow dynamic interactions with
intelligent agents. It is widely agreed that we need to enable humans to
understand, appropriately trust, and effectively manage the emerging
generation of artificially intelligent partners (Arrieta, 2020). Defining a
successful application and its explanations remains relative to its audiences
and their understanding. This is a bit of a psychological task so we can’t
expect system designers and engineers to solve this without help (Mueller et
al, 2019). But engineers can understand that human interactions and
reactions to poor explanations can help to detect, and thus, correct things
like bias in the training dataset or in system reasoning.
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Current AI systems are good at recognizing objects, but can’t explain
what they see in ways understandable to and somewhat explainable by
laymen. Nor can systems read a textbook and understand the questions in
the back of the book which leads researchers to conclude they are devoid of
common sense. We agree, as DARPA’s Machine Common Sense (MCS)
proposal put it that the lack of a common sense is “perhaps the most
significant barrier” between the focus of AI applications today (such as
previously discussed), and the human-like systems we dream of. And at least
one of the areas that such an ability would play is with useful explanations.
It may also be true, as NELL researchers argue, that we will never produce
true NL understanding systems, until we have systems that react to arbitrary
sentences with “I knew that, or didn’t know and accept or disagree because
X”.

Better Methods for Engineering CSKR and Explanation: It is also
worth noting that as explanation and CSKR research converge there is a need
to develop a common, enhanced ontology engineering practice. As we arrive
at a more focused understanding of CSKR there will be a need for this
convergence to be incorporated into common ontological engineering
practices. For efforts like CSK base building this should include guidance
and best practices for the extraction of rules from extant, quality ontologies.
A particular task is evaluating the quality of knowledge, both CSK and
domain knowledge extracted from text. If knowledge is extracted from text
and online information building of CSK will require methods to clean, refine
and organize them. It is not as simple as saying that a system provides an
exact match of words to what a human might produce given the many ways
that meaning may be expressed. And it is costly to test system generated
explanations or even captions against human ones due to the human cost.

One interesting research approach is to train a system to distinguish
human and ML/DL system generated captions (for images etc.). After
training one can use the resulting learned distinguished systems to critique
the quality of the ML/DL generated labels.

In some cases, and increasingly so, a variety of CSK/information
extracted is aligned (e.g. some information converges from different sources)
by means of an extant (hopefully of high quality) ontology and perhaps
several. This means that some aspect of the knowledge in the ontologies
provides an interpretive or validating activity for the structuring involved in
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building artifacts like KGs. Knowledge graph gaps can also be filled in by
internal processes looking for such things as consistency with common ideas
as well as from external processes which adds information from human
and/or automated sources. KG building efforts, which started employing
sources like Freebase’s data as a “gold standard” to evaluate data in DBpedia
which in turn is used to populate a KG, are moving on to augmentation from
text sources. In this light we can again note that a key requirement for
validated table quality of knowledge involves the ability to trace back from
a KB to the original source documents (such as LinkedData) and if filled in,
from other sources such as humans to make it understandable or trustworthy.
It is useful to note that this process of building such popular artifacts as KGs
clearly shows that they are not equivalent in quality to supporting ontologies.
In general there is some confusion in equating the quality of extracted
information from text, KGs, KBs, the inherent knowledge in DL systems
and ontologies.

But all such efforts are very probably going to rely on the assistance
of new as yet undeveloped tools. In light of this future work we will need to
refine a suite of tools and technologies to make the lifecycle of
commonsense KBes easier and faster to build.

A successfully engineered intelligent system would be more of an
“Associate Systems” with which users dialog with and over time get
satisfactory answers because they include a capability to adaptively learn
user knowledge and goals and are accountable for doing so over time. This
is, of course, commonly true for human associates. The idea here is to mirror
the user’s mental model including some idea of commonsense, which
becomes one of the main building block of intelligible human–machine
interactions. Such focused, good, fair explanations may use natural language
understanding to be part of a conversational dialogue human-computer
interaction (HCI) in which the system uses previous knowledge of user
(audience) knowledge and goals to discuss output explanations.

In such associate systems an issue will be the focus of attention. As
part of common experience focus is an important element of explanations
and commonsense assumptions and presumptions in a knowledge store play
an important role in focus point. Indeed the ability to focus on relevant points
may be part of the way a system competence is judged. But good focus has
many potential dimensions and can involve judging and evaluating technical
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factors such as ethicality, fairness, and, where relevant, legality along with
various roles such as relational, processual role, and social roles. These will
all be important aspects of advanced AI applications. An example of this is
that the role of legal advice is different in the context of a banking activity
as opposed to lying under oath.
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